Colorantes Naturales
COLORANTES NATURALES La distinción entre natural y artificial, términos muy utilizados en las polémicas sobre la salubridad de los alimentos, es de difícil aplicación cuando se quiere hablar con propiedad de loe e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o sería natural el color que un alimento tiene por sí mismo. Esto puede generalizarse a los colorantes presentes de forma espontánea en otros alimentos y extraíbles de ellos, pero puede hacer confusa la situación de aquellas substancias totalmente idénticas pero obtenidas por síntesis química. También la de colorantes obtenidos de materiales biológicos no alimentarios, insectos, por ejemplo, y la de aquellos que pueden bien añadirse o bien formarse espontáneamente al calentar un alimento, como es el caso del caramelo.
Los colorantes naturales son considerados en general como inocuos y consecuentemente las limitaciones específicas en su utilización son menores que las que afectan a los colorantes artificiales.
E-100 Curcumina Es el colorante de la cúrcuma, especia obtenida del rizoma de la planta del mismo nombre cultivada en la India.
En tecnología de alimentos se utiliza, además del colorante parcialmente purificado, la especia completa y la oleorresina; en estos casos su efecto es también el de aromatizante. La especia es un componente fundamental del curry, al que confiere su color amarillo intenso característico. Se utiliza también como colorante de mostazas, en preparados para sopas y caldos y en algunos productos cárnicos. Es también un colorante tradicional de derivados lácteos. Se puede utilizar sin más límite que la buena práctica de fabricación en muchas aplicaciones, con excepciones como las conservas de pescado, en las que el máximo legal es 200 mg/kg., las conservas vegetales y el yogur, en las que es 100 mg/kg., y en el queso fresco, en el que este máximo es sólo 27 mg/Kg.
El colorante de la cúrcuma se absorbe relativamente poco en el intestino, y aquel que es absorbido se elimina rápidamente por vía biliar. Tiene una toxicidad muy pequeña. La especia completa es capaz de inducir ciertos efectos de tipo teratogénico en algunos experimentos. La dosis diaria admisible para la OMS es, provisionalmente, de hasta 0,1 mg/kg. de colorante, y 0,3 mg/kg. de oleorresina.
Para más información:
- FAO/OMS Expert Commitee on Food Additives (1987). Curcumin and turmeric oleorresin, en Toxicological Evaluation of Certain Food Additives and Contaminants, 21, 73-79.
E-101 Riboblavina La riboflavina es una vitamina del grupo B, concretamente la denominada B2. Es la substancia que da color amarillo al suero de la leche, alimento que es la principal fuente de aporte, junto con el hígado. Industrialmente la riboflavina se obtiene por síntesis química o por métodos biotecnológicos.
Como colorante tiene la ventaja de ser estable frente al calentamiento, y el inconveniente de que, expuesta a la luz solar o a la procedente de tubos fluorescentes es capaz de iniciar reacciones que alteran el aroma y el sabor de los alimentos. Este efecto puede ser importante por ejemplo en la leche esterilizada envasada en botellas de vidrio.
Este aditivo es relativamente poco utilizado. Cuando se emplea como colorante no pueden hacerse indicaciones acerca del enriquecimiento vitamínico en la publicidad del alimento. En España se limita su uso en el yogur a 100 mg/kg. y en las conservas de pescado a 200 mg/kg. En otros productos no tiene limitación.
Aunque es una vitamina, y por tanto esencial para el organismo, su deficiencia no produce una enfermedad específica, como en el caso de la deficiencia de otras vitaminas, sino solamente una serie de alteraciones en la mucosa bucal que no suelen ser graves. Las necesidades de riboflavina para una persona normal se sitúan en torno a los 2 mg/día. Los estados carenciales, no graves, no son demasiado raros. Al ser una vitamina hidrosoluble, un eventual exceso no se acumula, sino que se elimina fácilmente y por tanto no resulta perjudicial. Es relativamente poco soluble, lo que dificulta la absorción de dosis muy grandes. En experimentos con animales, la riboflavina prácticamente carece de toxicidad. La dosis diaria aceptable es de hasta 5 mg/Kg. de peso.
E-120, Cochinilla, ácido carmínico El ácido carmínico, una substancia química compleja, se encuentra presente en las hembras con crías de ciertos insectos de la familia Coccidae , parásitos de algunas especies de cactus. Durante el siglo pasado, el principal centro de producción fueron las Islas Canarias, pero actualmente se obtiene principalmente en Perú y en otros países americanos. Los insectos que producen esta substancia son muy pequeños, hasta tal punto que hacen falta unos 100.000 para obtener 1 Kg. de producto, pero son muy ricos en colorante, alcanzando hasta el 20% de su peso seco. El colorante se forma en realidad al unirse la substancia extraída con agua caliente de los insectos, que por si misma no tiene color, con un metal como el aluminio, o el calcio y para algunas aplicaciones (bebidas especialmente) con el amoniaco. Es probablemente el colorante con mejores características tecnológicas de entre los naturales, pero se utiliza cada vez menos debido a su alto precio. Confiere a los alimentos a los que se añade un color rojo muy agradable, utilizándose en conservas vegetales y mermeladas (hasta 100 mg/kg.), helados, productos cárnicos y lácteos, como el yogur y el queso fresco (20 mg/Kg. de producto)y bebidas, tanto alcohólicas como no alcohólicas. No se conocen efectos adversos para la salud producidos por este colorante.
Para más información:
- Francis, F.J. (1987). Lesser-Known food colorante. Food Tecnolo. 41, 62-68.
E-140 Clorofilas
E-141 Complejos cúpricos de clorofilas y clorofilinas Las clorofilas son los pigmentos responsables del color verde de las hojas de los vegetales y de los frutos inmaduros. Son piezas claves en la fotosíntesis, proceso que permite transformar la energía solar en energía química, y finalmente a partir de ella producir alimentos para todos los seres vivos y mantener el nivel de oxígeno en la atmósfera. Por esta razón han sido estudiadas muy extensamente. Se ha dicho de ellas que son las substancias químicas mas importantes sobre la superficie de la Tierra.
Las plantas superiores tienen dos tipos de clorofila muy semejantes entre ellas, denominadas a y b, siendo la primera la mayoritaria y la que se degrada más fácilmente. Son químicamente muy complicadas, y solo en 1940 se pudo averiguar su estructura completa. Incluyen un átomo de magnesio dentro de su molécula.
El interés por la clorofila en tecnología alimentaria no estriba tanto en su uso como aditivo sino en evitar que se degrade durante el procesado y almacenamiento la que está presente en forma natural en los alimentos de origen vegetal. El calentamiento hace que las clorofilas pierdan el magnesio, transformándose en otras substancias llamadas feofitinas y cambiando su color verde característico por un color pardo oliváceo mucho menos atractivo. Este efecto puede producirse en el escaldado de las verduras previo a su congelación, en el enlatado, etc. También le afecta el oxígeno, la luz y la acidez, resistiendo mal además los periodos de almacenamiento prolongados.
Las clorofilas, que en los vegetales se encuentran dentro de ciertos orgánulos, son insolubles en agua pero solubles en alcohol, con el que pueden extraerse. Las clorofilinas son derivados algo más sencillos obtenidos por rotura parcial de las clorofilas. La substitución del magnesio por cobre da lugar al colorante
E-141, cuyo color es mucho más estable. Las clorofilas se utilizan poco como aditivos alimentarios, solo ocasionalmente en aceites, chicle, helados y bebidas refrescantes, en sopas preparadas y en productos lácteos. Su empleo está limitado, en el queso a 600 mg/Kg., solo el E-140, y en algunas conservas vegetales y yogures a 100 mg/Kg.
Estos colorantes se absorben muy poco en el tubo digestivo. No se ha establecido un límite máximo a la ingestión diaria de la clorofila utilizada como aditivo, ya que esta cantidad es despreciable frente a la ingerida a partir de fuentes naturales. La ingestión admisible del colorante E-141 es de hasta 15 mg/Kg. de peso y día, debido a su contenido en cobre (4-6% del peso de colorante). Una cantidad elevada de cobre puede ser muy tóxica. Sin embargo, las dietas occidentales habituales son usualmente deficitarias más que excedentarias en cobre, por lo que la pequeña cantidad que puede aportar este colorante en un uso normal sería probablemente más beneficiosa que perjudicial.
Para mas información.
Schwartz, S. J., y Lorenzo, T.V. (1990) Chlorophyls in foods. Crit. Rev. Food Sci. Technol. , 29, 1-17
E.150 Caramelo El caramelo es un material colorante de composición compleja y químicamente no bien definido, obtenido por calentamiento de un azúcar comestible (sacarosa y otros) bien solo o bien mezclado con determinadas substancias químicas. Según las substancias de que se trate, se distinguen cuatro tipos:
I. Obtenido calentando el azúcar sin mas adiciones o bien añadiendo también ácido acético, cítrico, fosfórico o sulfúrico, o hidróxido o carbonato sódico o potásico. A este producto se le conoce como caramelo vulgar o cáustico.
II. Obtenido calentando el azúcar con anhídrido sulfuroso o sulfato sódico o potásico.
III. Obtenido calentando el azúcar con amoniaco o con una de sus sales (sulfato, carbonato o fosfato amónico)
IV. Obtenido calentando el azúcar con sulfato amónico o con una mezcla de anhídrido sulfuroso y amoniaco.
El caramelo se produce de forma natural al calentar productor ricos en azúcares, por ejemplo en el horneado de los productos de bollería y galletas, fabricación de guirlaches, etc. El tipo I es asimilable al azúcar quemado obtenido de forma doméstica para uso en repostería.
En España, el caramelo tiene la consideración legal de colorante natural y por tanto no está sometido en general a más limitaciones que las de la buena práctica de fabricación, con algunas excepciones como los yogures, en los que solo se aceptan 159 mg/Kg. de producto.
Es el colorante típico de las bebidas de cola, así como de muchas bebidas alcohólicas, como ron, coñac, etc. También se utiliza en repostería, en la elaboración del pan de centeno, en la fabricación de caramelos, de cerveza, helados, postres, sopas preparadas, conservas y diversos productos cárnicos. Es con mucho el colorante más utilizado en alimentación, representando más del 90% del total de todos los añadidos.
Al ser un producto no definido químicamente, su composición depende del método preciso de fabricación. La legislación exige que la presencia de algunas substancias potencialmente nocivas quede por debajo de cierto límite. Los tipos I y II son considerados perfectamente seguros, y la OMS no ha especificado una ingestión diaria admisible. En el caso de los tipos III y IV la situación es algo distinta, ya que la presencia de amoniaco en el proceso de elaboración hace que se produzca una substancia, el 2-acetil-4-(5)- tetrahidroxibutilimidazol, que puede afectar al sistema inmune. También se producen otras substancias capaces de producir, a grandes dosis, convulsiones en animales. Por esta razón el comité FAO/OMS para aditivos alimentarios fija la ingestión diaria admisible en 200 mg/Kg. de peso para estos dos tipos. En España el uso de caramelo "al amoniaco" está prohibido en aplicaciones en las que, sin embargo, se autorizan los otros tipos, por ejemplo en ciertas clases de pan.
Aproximadamente la mitad de los componentes del caramelo son azúcares asimilables. Aunque no se conoce con mucha precisión, parece que los otros componentes específicos del caramelo se absorben poco en el intestino. Dosis de hasta 18 g/día en voluntarios humanos no producen más problemas que un ligero efecto laxante. Los experimentos realizados para estudiar el posible efecto sobre los genes de este colorante han dado en general resultados negativos, aunque en algunos casos, debido a la indefinición del producto, los resultados fueran equívocos.
Para más información:
- Joint FAO/OMS expert Comitée of Food Additives (1987). Caramel colours, en Toxicological Evaluation of Certain Food Aditives and Contaminants, 20, 99-163.
E-153 Carbón medicinal vegetal Este producto se obtiene, como su nombre indica, por la carbonización de materias vegetales en condiciones controladas. El proceso de fabricación debe garantizar la ausencia de ciertos hidrocarburos que podrían formarse durante el proceso de carbonización y que son cancerígenos. Por ello debe cumplir unas normas de calidad muy estrictas, las que exige su uso para aplicaciones farmacéuticas. En la legislación española tiene la consideración de colorante natural. Como colorante tiene muy poca importancia, pero un producto semejante, el carbón activo, es fundamental como auxiliar tecnológico para decolorar parcialmente mostos, vinos y vinagres, desodorizar aceites y otros usos. Este producto se elimina por filtración en la industria después de su actuación, y no se encuentra en el producto que llega al consumidor.
E-160 Carotenoides
E-160 a Alfa, beta y gamma caroteno
E-160 b Bixina, norbixina (Rocou, Annato)
E-160 c Capsantina, capsorrubina
E-160 d Licopeno
E-160 e Beta-apo-8'-carotenal
E-160 f Ester etílico del ácido beta-apo-8'-carotenoico
Los carotenoides y las xantofilas (E-161) son un amplio grupo de pigmentos vegetales y animales, del que forman parte más de 450 substancias diferentes, descubriéndose otras nuevas con cierta frecuencia. Se ha calculado que la naturaleza fabrica cada año alrededor de 100 millones de toneladas, distribuidas especialmente en las algas y en las partes verdes de los vegetales superiores. Alrededor del 10% de los diferentes carotenoides conocidos tiene actividad como vitamina A en mayor o menor extensión. Alrededor del 10% de los diferentes carotenoides conocidos tiene mayor o menor actividad como vitamina A.
Los carotenoides utilizados en la fabricación de alimentos se pueden obtener extrayéndolos de los vegetales que los contienen (el aceite de palma, por ejemplo, contiene un 0,1%, que puede recuperarse en el refinado) o, en el caso del beta-caroteno, beta-apo-8'-carotenal y éster etílico al ácido beta-apo-8'-carotenoico, por síntesis química. Los dos últimos no existen en la naturaleza.
La bixina y la norbixina se obtienen de extractos de la planta conocida como bija, roccou o annato (Bixa orellana ). Son compuestos algo diferentes químicamente entre ellos, siendo la bixina soluble en las grasas e insoluble en agua y la norbixina a la inversa. Se han utilizado desde hace muchos años para colorear productos lácteos, y su color amarillo puede aclararse por calentamiento, lo que facilita la obtención del tono adecuado. La capsantina es el colorante típico del pimiento rojo y del pimentón, siendo España el principal productor mundial. Sus aplicaciones en la fabricación de embutidos son de sobra conocidas. El licopeno es el colorante rojo del tomate y los carotenos están distribuidos muy ampliamente entre los vegetales, especialmente el beta-caroteno, que es también el colorante natural de la mantequilla.
No son muy solubles en las grasas, y, con la excepción de la norbixina, prácticamente nada en agua. Cuando se utilizan para colorear bebidas refrescantes (el beta-caroteno especialmente, para las bebidas de naranja), es en forma de suspensiones desarrolladas específicamente con este fin. Tienen la ventaja de no verse afectados, como otros colorantes, por la presencia de ácido ascórbico, el calentamiento y la congelación, así como su gran potencia colorante, que ya resulta sensible a niveles de una parte por millón en el alimento. Sus principales inconvenientes son que son caros y que presentan problemas técnicos durante su utilización industrial, ya que son relativamente difíciles de manejar por su lentitud de disolución y por la facilidad con que se alteran en presencia de oxígeno. Pierden color fácilmente en productos deshidratados, pero en cambio resisten bien el enlatado.
Algunos de ellos (el beta-caroteno y el beta-apo-8'-carotenal, especialmente y, mucho menos, el E-160 f) tienen actividad como vitamina A, en la que se pueden transformar en el organismo. La ingestión de cantidades muy elevadas de esta vitamina puede causar intoxicaciones graves. Sin embargo, las dosis necesarias para originar este efecto quedan muy por encima de las que podrían formarse a partir de los carotenoides concebiblemente presentes como aditivo alimentario. La ingestión diaria admisible según el comité FAO/OMS es de hasta 0,065 mg/Kg. de peso en el caso del E-160 B y de 5 mg/Kg. de peso en los E-160 e y E-160 f. Se han descrito algunos casos, raros, de alergia al extracto de bija.
La legislación española autoriza el uso del caroteno sin límites para colorear la mantequilla y la margarina, 0,1 g/kg. en el yogur, 200 mg/kg. en conservas de pescado, 300 mg/kg. en los productos derivados de huevos, conservas vegetales y mermeladas, y hasta 600 mg/kg. en quesos. En sus aplicaciones en bebidas refrescantes, helados y productos cárnicos no tiene limitaciones. En Estados Unidos solo se limita el uso del E-160 e (0,015 g/libra).
Los carotenoides son cada vez más usados en tecnología alimentaria a pesar de los problemas que se han indicado, especialmente ante las presiones ciudadanas contra los colorantes artificiales. Esto es especialmente notable en el caso de las bebidas refrescantes. También se está extendiendo en otros países la utilización del colorante del pimentón y de la propia especia.
Desde hace algunos años se ha planteada la hipótesis de que el beta-caroteno, o mejor, los alimentos que lo contienen, pueden tener un efecto protector frente a ciertos tipos de cáncer. Los datos epidemiológicos parecen apoyarla, pero la complejidad del problema hace que aún no se puedan indicar unas conclusiones claras, ni mucho menos recomendar la ingestión de dosis farmacológicas de esta substancia.
Para más información:
- Gordon, H.T., Bouernfeind, J.C. (1982). Carotenoids as food colorants. Crit. Rev. Food Sci. Nutr. 18, 59-...- Peto, R., Doll, R., Buckley, J.D., Sporn, M.B. (1981). Can dietary beta-carotene materially reduce human cáncer rates?. Nature 290, 201-208.

Toni Oliver. Prohibida la reproducción del contenido de esta Web sin la autorización del Autor.